3.4.23 \(\int \frac {1}{x^3 (8 c-d x^3) \sqrt {c+d x^3}} \, dx\) [323]

3.4.23.1 Optimal result
3.4.23.2 Mathematica [B] (warning: unable to verify)
3.4.23.3 Rubi [A] (verified)
3.4.23.4 Maple [C] (warning: unable to verify)
3.4.23.5 Fricas [B] (verification not implemented)
3.4.23.6 Sympy [F]
3.4.23.7 Maxima [F]
3.4.23.8 Giac [F]
3.4.23.9 Mupad [F(-1)]

3.4.23.1 Optimal result

Integrand size = 27, antiderivative size = 66 \[ \int \frac {1}{x^3 \left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=-\frac {\sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (-\frac {2}{3},1,\frac {1}{2},\frac {1}{3},\frac {d x^3}{8 c},-\frac {d x^3}{c}\right )}{16 c x^2 \sqrt {c+d x^3}} \]

output
-1/16*AppellF1(-2/3,1/2,1,1/3,-d*x^3/c,1/8*d*x^3/c)*(1+d*x^3/c)^(1/2)/c/x^ 
2/(d*x^3+c)^(1/2)
 
3.4.23.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(242\) vs. \(2(66)=132\).

Time = 11.24 (sec) , antiderivative size = 242, normalized size of antiderivative = 3.67 \[ \int \frac {1}{x^3 \left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\frac {-\frac {64 \left (c+d x^3\right )}{c^2}+\frac {d^2 x^6 \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},1,\frac {7}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )}{c^3}+\frac {4096 d x^3 \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},1,\frac {4}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )}{\left (-8 c+d x^3\right ) \left (32 c \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},1,\frac {4}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )+3 d x^3 \left (\operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},2,\frac {7}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )-4 \operatorname {AppellF1}\left (\frac {4}{3},\frac {3}{2},1,\frac {7}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )\right )\right )}}{1024 x^2 \sqrt {c+d x^3}} \]

input
Integrate[1/(x^3*(8*c - d*x^3)*Sqrt[c + d*x^3]),x]
 
output
((-64*(c + d*x^3))/c^2 + (d^2*x^6*Sqrt[1 + (d*x^3)/c]*AppellF1[4/3, 1/2, 1 
, 7/3, -((d*x^3)/c), (d*x^3)/(8*c)])/c^3 + (4096*d*x^3*AppellF1[1/3, 1/2, 
1, 4/3, -((d*x^3)/c), (d*x^3)/(8*c)])/((-8*c + d*x^3)*(32*c*AppellF1[1/3, 
1/2, 1, 4/3, -((d*x^3)/c), (d*x^3)/(8*c)] + 3*d*x^3*(AppellF1[4/3, 1/2, 2, 
 7/3, -((d*x^3)/c), (d*x^3)/(8*c)] - 4*AppellF1[4/3, 3/2, 1, 7/3, -((d*x^3 
)/c), (d*x^3)/(8*c)]))))/(1024*x^2*Sqrt[c + d*x^3])
 
3.4.23.3 Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {1013, 1012}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^3 \left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx\)

\(\Big \downarrow \) 1013

\(\displaystyle \frac {\sqrt {\frac {d x^3}{c}+1} \int \frac {1}{x^3 \left (8 c-d x^3\right ) \sqrt {\frac {d x^3}{c}+1}}dx}{\sqrt {c+d x^3}}\)

\(\Big \downarrow \) 1012

\(\displaystyle -\frac {\sqrt {\frac {d x^3}{c}+1} \operatorname {AppellF1}\left (-\frac {2}{3},1,\frac {1}{2},\frac {1}{3},\frac {d x^3}{8 c},-\frac {d x^3}{c}\right )}{16 c x^2 \sqrt {c+d x^3}}\)

input
Int[1/(x^3*(8*c - d*x^3)*Sqrt[c + d*x^3]),x]
 
output
-1/16*(Sqrt[1 + (d*x^3)/c]*AppellF1[-2/3, 1, 1/2, 1/3, (d*x^3)/(8*c), -((d 
*x^3)/c)])/(c*x^2*Sqrt[c + d*x^3])
 

3.4.23.3.1 Defintions of rubi rules used

rule 1012
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m 
+ 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, 
 b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n 
 - 1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 1013
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^ 
n/a))^FracPart[p])   Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; 
 FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] & 
& NeQ[m, n - 1] &&  !(IntegerQ[p] || GtQ[a, 0])
 
3.4.23.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 6.

Time = 4.90 (sec) , antiderivative size = 716, normalized size of antiderivative = 10.85

method result size
elliptic \(-\frac {\sqrt {d \,x^{3}+c}}{16 c^{2} x^{2}}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}}{-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, F\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{48 c^{2} \sqrt {d \,x^{3}+c}}-\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (d \,\textit {\_Z}^{3}-8 c \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \Pi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, -\frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d}{18 d c}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {d \,x^{3}+c}}\right )}{216 d^{2} c^{2}}\) \(716\)
risch \(\text {Expression too large to display}\) \(720\)
default \(\text {Expression too large to display}\) \(722\)

input
int(1/x^3/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/16*(d*x^3+c)^(1/2)/c^2/x^2+1/48*I/c^2*3^(1/2)*(-c*d^2)^(1/3)*(I*(x+1/2/ 
d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3)) 
^(1/2)*((x-1/d*(-c*d^2)^(1/3))/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c* 
d^2)^(1/3)))^(1/2)*(-I*(x+1/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1 
/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*EllipticF(1/3*3^(1/2) 
*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c* 
d^2)^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I 
*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2))-1/216*I/d^2/c^2*2^(1/2)*sum(1/_alpha^2* 
(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3) 
))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^ 
(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+ 
(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_ 
alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_al 
pha*d-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/ 
2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),-1/18/d*(2*I 
*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha+I*3^(1/ 
2)*c*d-3*(-c*d^2)^(2/3)*_alpha-3*c*d)/c,(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/ 
d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^ 
3*d-8*c))
 
3.4.23.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2373 vs. \(2 (52) = 104\).

Time = 0.99 (sec) , antiderivative size = 2373, normalized size of antiderivative = 35.95 \[ \int \frac {1}{x^3 \left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\text {Too large to display} \]

input
integrate(1/x^3/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="fricas")
 
output
1/3456*(2*c^2*x^2*(d^4/c^13)^(1/6)*log((d^6*x^9 + 318*c*d^5*x^6 + 1200*c^2 
*d^4*x^3 + 640*c^3*d^3 + 18*(c^9*d^3*x^8 + 38*c^10*d^2*x^5 + 64*c^11*d*x^2 
)*(d^4/c^13)^(2/3) + 6*sqrt(d*x^3 + c)*((c^11*d^2*x^7 + 80*c^12*d*x^4 + 16 
0*c^13*x)*(d^4/c^13)^(5/6) + (7*c^7*d^3*x^6 + 152*c^8*d^2*x^3 + 64*c^9*d)* 
sqrt(d^4/c^13) + 6*(5*c^3*d^4*x^5 + 32*c^4*d^3*x^2)*(d^4/c^13)^(1/6)) + 18 
*(5*c^5*d^4*x^7 + 64*c^6*d^3*x^4 + 32*c^7*d^2*x)*(d^4/c^13)^(1/3))/(d^3*x^ 
9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3)) - 2*c^2*x^2*(d^4/c^13)^(1/6)* 
log((d^6*x^9 + 318*c*d^5*x^6 + 1200*c^2*d^4*x^3 + 640*c^3*d^3 + 18*(c^9*d^ 
3*x^8 + 38*c^10*d^2*x^5 + 64*c^11*d*x^2)*(d^4/c^13)^(2/3) - 6*sqrt(d*x^3 + 
 c)*((c^11*d^2*x^7 + 80*c^12*d*x^4 + 160*c^13*x)*(d^4/c^13)^(5/6) + (7*c^7 
*d^3*x^6 + 152*c^8*d^2*x^3 + 64*c^9*d)*sqrt(d^4/c^13) + 6*(5*c^3*d^4*x^5 + 
 32*c^4*d^3*x^2)*(d^4/c^13)^(1/6)) + 18*(5*c^5*d^4*x^7 + 64*c^6*d^3*x^4 + 
32*c^7*d^2*x)*(d^4/c^13)^(1/3))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 
512*c^3)) - 144*sqrt(d)*x^2*weierstrassPInverse(0, -4*c/d, x) + (sqrt(-3)* 
c^2*x^2 + c^2*x^2)*(d^4/c^13)^(1/6)*log((d^6*x^9 + 318*c*d^5*x^6 + 1200*c^ 
2*d^4*x^3 + 640*c^3*d^3 - 9*(c^9*d^3*x^8 + 38*c^10*d^2*x^5 + 64*c^11*d*x^2 
 + sqrt(-3)*(c^9*d^3*x^8 + 38*c^10*d^2*x^5 + 64*c^11*d*x^2))*(d^4/c^13)^(2 
/3) + 3*sqrt(d*x^3 + c)*((c^11*d^2*x^7 + 80*c^12*d*x^4 + 160*c^13*x - sqrt 
(-3)*(c^11*d^2*x^7 + 80*c^12*d*x^4 + 160*c^13*x))*(d^4/c^13)^(5/6) - 2*(7* 
c^7*d^3*x^6 + 152*c^8*d^2*x^3 + 64*c^9*d)*sqrt(d^4/c^13) + 6*(5*c^3*d^4...
 
3.4.23.6 Sympy [F]

\[ \int \frac {1}{x^3 \left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=- \int \frac {1}{- 8 c x^{3} \sqrt {c + d x^{3}} + d x^{6} \sqrt {c + d x^{3}}}\, dx \]

input
integrate(1/x**3/(-d*x**3+8*c)/(d*x**3+c)**(1/2),x)
 
output
-Integral(1/(-8*c*x**3*sqrt(c + d*x**3) + d*x**6*sqrt(c + d*x**3)), x)
 
3.4.23.7 Maxima [F]

\[ \int \frac {1}{x^3 \left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\int { -\frac {1}{\sqrt {d x^{3} + c} {\left (d x^{3} - 8 \, c\right )} x^{3}} \,d x } \]

input
integrate(1/x^3/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="maxima")
 
output
-integrate(1/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)*x^3), x)
 
3.4.23.8 Giac [F]

\[ \int \frac {1}{x^3 \left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\int { -\frac {1}{\sqrt {d x^{3} + c} {\left (d x^{3} - 8 \, c\right )} x^{3}} \,d x } \]

input
integrate(1/x^3/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="giac")
 
output
integrate(-1/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)*x^3), x)
 
3.4.23.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^3 \left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\int \frac {1}{x^3\,\sqrt {d\,x^3+c}\,\left (8\,c-d\,x^3\right )} \,d x \]

input
int(1/(x^3*(c + d*x^3)^(1/2)*(8*c - d*x^3)),x)
 
output
int(1/(x^3*(c + d*x^3)^(1/2)*(8*c - d*x^3)), x)